Arccos

From specialfunctionswiki
Jump to: navigation, search

The function $\mathrm{arccos} \colon \mathbb{C} \setminus \{(-\infty,-1) \bigcup (1,\infty) \} \rightarrow \mathbb{C}$ is defined by $$\rm{arccos}(z)=\dfrac{\pi}{2} + i\log\left( iz + \sqrt{1-z^2} \right),$$ where $i$ denotes the imaginary number and $\log$ denotes the logarithm.

Properties[edit]

Arccos as inverse cosine
Derivative of arccos
Antiderivative of arccos

References[edit]

Weisstein, Eric W. "Inverse Cosine." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/InverseCosine.html

See Also[edit]

Cosine
Cosh
Arccosh

Inverse trigonometric functions