Dirichlet beta

From specialfunctionswiki
Jump to: navigation, search

The Dirichlet $\beta$ function is defined by $$\beta(z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^z}.$$


Properties[edit]

Catalan's constant using Dirichlet beta
Dirichlet beta in terms of Lerch transcendent