Exponential integral E

From specialfunctionswiki
Jump to: navigation, search

The exponential integral functions $E_n$ are defined for $\left|\mathrm{arg \hspace{2pt}}z\right|<\pi$ and $n=1,2,3,\ldots$ by $$E_n(z)=\displaystyle\int_1^{\infty} \dfrac{e^{-zt}}{t^n} \mathrm{d}t.$$

Properties[edit]

Relationship between the exponential integral and upper incomplete gamma function
Symmetry relation of exponential integral E
Recurrence relation of exponential integral E

Videos[edit]

Laplace transform of exponential integral (2 January 2015)

See Also[edit]

Exponential integral Ei

References[edit]

$\ast$-integral functions