Knopp function

From specialfunctionswiki
Jump to: navigation, search

Let $a \in (0,1)$ $ab > 1$. Define the Knopp function $K \colon \mathbb{R} \rightarrow \mathbb{R}$ by $$K_{a,b}(x)=\displaystyle\sum_{k=0}^{\infty} a^k \mathrm{dist}_{\mathbb{Z}} \left( b^k x \right),$$ where $\mathrm{dist}_{\mathbb{Z}}$ denotes the distance to integers function.

Properties[edit]

Knopp function is continuous
Knopp function is nowhere differentiable

See Also[edit]

Takagi function
van der Waerden function

References[edit]

[1]