Lerch zeta function

From specialfunctionswiki
Jump to: navigation, search

The Lerch zeta function is defined by $$L(\lambda,\alpha,z) = \displaystyle\sum_{k=0}^{\infty} \dfrac{e^{2i \pi \lambda k}}{(n+\alpha)^z}.$$

Properties[edit]

Relationship between Lerch transcendent and Lerch zeta

References[edit]

The Lerch zeta function III. Polylogarithms and special values