Q-exponential E sub q

From specialfunctionswiki
Jump to: navigation, search

If $|q|>1$ or the pair $0 < |q| <1$ and $|z| < \dfrac{1}{|1-q|}$ hold, then the $q$-exponential $E_q$ is $$E_q(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^k}{[k]_q!},$$ where $[k]_q!$ denotes the $q$-factorial.

Properties[edit]

Meromorphic continuation of q-exponential E sub q
Q-difference equation for q-exponential E sub q

See also[edit]

q-Cos
q-exponential E sub 1/q
q-Sin

References[edit]