Sievert integral

From specialfunctionswiki
Jump to: navigation, search

The Sievert integral $S$ is defined by $$S(x,\theta)=\int_0^{\theta} e^{-x \sec(\phi)} \mathrm{d} \phi,$$ where $e^{*}$ denotes the exponential and $\sec$ denotes secant.

Properties[edit]

Asymptotic behavior of Sievert integral
Relationship between Sievert integral and exponential integral E
Relationship between Sievert integral and Bessel K

External links[edit]

[1]

References[edit]

1964: Milton Abramowitz and Irene A. Stegun: Handbook of mathematical functions ... (previous) ... (next)