Tangent
From specialfunctionswiki
The tangent function is defined as the ratio of the sine and cosine functions: $$\tan(z) = \dfrac{\sin(z)}{\cos(z)}.$$
- Error creating thumbnail: Unable to save thumbnail to destination
Graph of $\tan$ over $[-2\pi,2\pi]$.
- Error creating thumbnail: Unable to save thumbnail to destination
Domain coloring of $\tan$.
Properties
Derivative of tangent
Relationship between tan and tanh
Relationship between tanh and tan
Relationship between tangent, Gudermannian, and sinh
Relationship between sinh, inverse Gudermannian, and tan
See Also
References
- 1964: {{ #if: |{{{2}}}|Milton Abramowitz}}{{#if: Irene A. Stegun|{{#if: |, {{ #if: |{{{2}}}|Irene A. Stegun}}{{#if: |, [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]{{#if: |, [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]{{#if: |, [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]] and [[Mathematician:{{{author6}}}|{{ #if: |{{{2}}}|{{{author6}}}}}]]| and [[Mathematician:{{{author5}}}|{{ #if: |{{{2}}}|{{{author5}}}}}]]}}| and [[Mathematician:{{{author4}}}|{{ #if: |{{{2}}}|{{{author4}}}}}]]}}| and [[Mathematician:{{{author3}}}|{{ #if: |{{{2}}}|{{{author3}}}}}]]}}| and {{ #if: |{{{2}}}|Irene A. Stegun}}}}|}}: [[Book:Milton Abramowitz/Handbook of mathematical functions{{#if: |/Volume {{{volume}}}|}}{{#if: |/{{{edpage}}}}}|Handbook of mathematical functions{{#if: |: Volume {{{volume}}}|}}{{#if: |: {{{eddisplay}}}|{{#if: | ({{{ed}}} ed.)}}}}]]{{#if: | (translated by [[Mathematician:{{{translated}}}|{{ #if: |{{{2}}}|{{{translated}}}}}]])}}{{#if: |, {{{publisher}}}|}}{{#if: |, ISBN {{{isbn}}}|}}{{#if: Cosine | ... (previous)|}}{{#if: Cosecant | ... (next)|}}{{#if: |: Entry: {{#if: |[[{{{entryref}}}|{{{entry}}}]]|{{{entry}}}}}|}}: 4.3.3
Tangent