Weierstrass elementary factors

From specialfunctionswiki
Jump to: navigation, search

The Weierstrass elementary factors $E_n$ are defined for $n \in \{0,1,2,\ldots\}$ by $$E_n(z)=\left\{ \begin{array}{ll} 1-z &; n=0 \\ (1-z)e^{z+\frac{z^2}{2}+\frac{z^3}{3}+\ldots+\frac{z^n}{n}} &; \mathrm{otherwise}. \end{array} \right.$$

Properties[edit]

Weierstrass elementary factors inequality
Product of Weierstrass elementary factors is entire
Weierstrass factorization theorem

References[edit]