Difference between revisions of "2F1(1/2,1;3/2;z^2)=log((1+z)/(1-z))/(2z)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $${}_2F_1 \left( \dfrac{1}{2}, 1 ; \dfrac{3}{2}; z^2 \right)= \dfrac{1}{2z} \log \left( \dfrac{1+z}{1-z} \right),$$ where ${}_2F_1$ de...")
 
 
Line 7: Line 7:
  
 
==References==
 
==References==
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=2F1(1,1;2;z)=-log(1-z)/z|next=2F1(1/2,1;3/2;-z^2)=arctan(z)/z}}: 15.1.4
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=2F1(1,1;2;z)=-log(1-z)/z|next=2F1(1/2,1;3/2;-z^2)=arctan(z)/z}}: $15.1.4$
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Latest revision as of 23:16, 12 July 2016

Theorem

The following formula holds: $${}_2F_1 \left( \dfrac{1}{2}, 1 ; \dfrac{3}{2}; z^2 \right)= \dfrac{1}{2z} \log \left( \dfrac{1+z}{1-z} \right),$$ where ${}_2F_1$ denotes the hypergeometric 2F1 and $\log$ denotes the logarithm.

Proof

References