Difference between revisions of "Airy Bi"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(33 intermediate revisions by the same user not shown)
Line 1: Line 1:
The Airy function $\mathrm{Ai}$ in the complex plane are given by
+
__NOTOC__
$$\mathrm{Ai}(z) = \dfrac{1}{2\pi i} \displaystyle\int_{-i\infty}^{i\infty}\exp \left( \dfrac{t^3}{3} - zt \right) dt$$
+
 
and
+
The Airy function $\mathrm{Bi}$ (sometimes called the "Bairy function") is a solution of the [[Airy differential equation]]
$$\mathrm{Bi}(x) = \dfrac{1}{\pi} \displaystyle\int_0^{\infty} \left[ e^{-\frac{t^3}{3} + xt} + \sin \left( \dfrac{t^3}{3}+xt \right) \right] dt.$$
+
$$y' '(z)-zy(z)=0,$$
 +
which is [[linearly independent]] from the [[Airy Ai]] function.
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
File:Airyai.png|Airy $\mathrm{Ai}$ function.
+
File:Airybiplot.png|Aairy $\mathrm{Bi}$ function.
File:Airybi.png|Bairy $\mathrm{Bi}$ function.
+
File:Complexairybiplot.png|[[Domain coloring]] of $\mathrm{Bi}$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
[[Relationship between Airy Bi and modified Bessel I]]<br />
<strong>Theorem:</strong> The function $\mathrm{Ai}$ is a solution to the differential equation
+
[[Relationship between Scorer Gi and Airy functions]]<br />
$$y''(z) - zy(z) = 0.$$
+
[[Relationship between Scorer Hi and Airy functions]]<br />
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> Suppose that $y$ has the form
 
$$y(z) = \displaystyle\int_{C} f(t)e^{-zt} dt,$$
 
where $C$ is an as-of-yet undefined contour in the complex plane. Assuming that we may differentiate under the integral it is clear that
 
$$y''(z)=\displaystyle\int_{C} f(t)t^2 e^{-zt} dt.$$
 
Thus we plug this representation into the differential equation to get
 
$$(*) \hspace{35pt} y''(z)-zy(z) = \displaystyle\int_{C} (t^2-z)f(t)e^{-zt} dt = 0.$$
 
Now we integrate by parts to see
 
$$\begin{array}{ll}
 
\displaystyle\int_{C} zf(t)e^{-zt} dt &= -\displaystyle\int_{C} f(t) \dfrac{d}{dt} e^{-zt} dt \\
 
&= -f(t)e^{zt} \Bigg |_{C} + \displaystyle\int_{C} f'(t)e^{-zt} dt.
 
\end{array}$$
 
We will pick the contour $C$ to enforce $f(t)e^{zt} \Bigg |_{C}=0$. We will do this by first determining the function $f$. Plugging this back into the formula $(*)$ yields
 
$$\begin{array}{ll}
 
0 &= y''(z) - zy(z) \\
 
&= f(t)e^{zt} \Bigg |_{C} + \displaystyle\int_{C} (t^2f(t)-f'(t))e^{zt} dt.
 
\end{array}$$
 
We have the freedom to choose $f$ and $C$. We will choose $f$ so that
 
$$t^2f(t)-f'(t)=0.$$
 
This is a simple differential equation with [http://www.wolframalpha.com/input/?i=t^2f%28t%29-f%27%28t%29%3D0 a solution]
 
$$f(t)=\xi e^{\frac{t^3}{3}},$$
 
for some constant $\xi$ (later when we define $\mathrm{Ai}$, the convention is to choose $\xi=\dfrac{1}{2\pi i}$, but we will proceed the argument right now as if $\xi=1$). So we have derived
 
$$y(z)=\displaystyle\int_{C} e^{-zt + \frac{t^3}{3}} dt.$$
 
To pick the contour $C$ note that the integrand of $y$ is an [[entire function]] and hence if $C$ is a simple closed curve we would have $y(z)=0$ for all $z \in \mathbb{C}$.
 
  
The variable of the integral defining $y$ is $t$ and for $t \in \mathbb{C}$ with $|t|$ very large, the cubic term in the exponent dominates. Hence consider polar form $t=|t|e^{i\theta}$ and compute
+
=Videos=
$$e^{\frac{t^3}{3}} = \exp\left( \frac{|t|^3 e^{3i\theta}}{3} \right).$$
+
[https://www.youtube.com/watch?v=HlX62TkR6gc&noredirect=1 Leading Tsunami wave reaching the shore (27 November 2009)]<br />
Notice that the inequality $\mathrm{Re} \hspace{2pt} e^{3i\theta} \leq 0$ forces $\cos(3\theta)\leq 0$ [http://www.wolframalpha.com/input/?i=cos%283*theta%29%3C0 yielding] three sectors defined by $\theta$: [[File:Airysectors.png|200px]]
+
[https://www.youtube.com/watch?v=0jnXdXfIbKk&noredirect=1 Series solution of ode: Airy's equation (3 November 2010)]<br />
$$-\dfrac{\pi}{2} \leq \theta \leq -\dfrac{\pi}{6},$$
+
[https://www.youtube.com/watch?v=oYJq3mhg5yE&noredirect=1 Airy differential equation (26 November 2013)]<br />
$$\dfrac{\pi}{6} \leq \theta \leq \dfrac{\pi}{2},$$
 
$$\dfrac{9\pi}{6} \leq \theta \leq \dfrac{11\pi}{6}.$$
 
  
We will consider three contours $C_1,C_2,C_3$, where each contour $C_i$ has endpoints at complex $\infty$ in different sectors. Call the left sector $\gamma$, the upper-right sector $\beta$ and the lower-right sector $\alpha$. Let $C_1$ be oriented from sector $\alpha$ to sector $\beta$ (this sort of curve is labelled as "$C$" in the image above), $C_2$ from sector $\beta$ to sector $\gamma$, and $C_3$ from sector $\gamma$ to sector $\alpha$. By our analysis we have derived three solutions to Airy's equation:
+
=References=
$$y_i(z) = \displaystyle\int_{C_i} e^{-zt + \frac{t^3}{3}} dt;i=1,2,3$$
+
[http://www.ams.org/samplings/feature-column/fcarc-rainbows The mathematics of rainbows]<br />
Since these functions satisfy a second order differential equation, it is impossible for them to be [[linearly independent]]. Now notice that we can compute
+
[http://www.ams.org/journals/mcom/1979-33-145/S0025-5718-1979-0514831-8/S0025-5718-1979-0514831-8.pdf Tables of Weyl Fractional Integrals for the Airy Function]<br />
$$\displaystyle\int_{C_1\cup C_2 \cup C_3} e^{-zt + \frac{t^3}{3}} dt = 0.$$
+
[http://www.amazon.com/Special-Functions-Introduction-Classical-Mathematical/dp/0471113131 Special Functions: An Introduction to the Classical Functions of Mathematical Physics]<br />
Therefore
+
[http://www.people.fas.harvard.edu/~sfinch/csolve/ai.pdf Airy function zeros]
$$y_1(z)+y_2(z)+y_3(z)=0.$$
 
 
 
By convention we define
 
$$\mathrm{Ai}(z) = \dfrac{1}{2\pi i} \displaystyle\int_{C_1} e^{-zt + \frac{t^3}{3}} dt.$$
 
  
Notice that the first two of these sectors includes the entire $y$-axis in the complex plane.0 Hence we will take our contour $C$ to be the $y$ axis directed from $-i\infty$ toward $+i\infty$. This yields finally
+
=See Also=
$$y(z)=\displaystyle\int_{-i\infty}^{i\infty} e^{zt+\frac{t^3}{3}} dt.$$
+
[[Airy Ai]] <br />
</div>
+
[[Scorer Gi]] <br />
</div>
+
[[Scorer Hi]] <br />
  
=References=
+
[[Category:SpecialFunction]]
[http://www.ams.org/journals/mcom/1979-33-145/S0025-5718-1979-0514831-8/S0025-5718-1979-0514831-8.pdf Tables of Weyl Fractional Integrals for the Airy Function]
 

Latest revision as of 16:07, 21 October 2017


The Airy function $\mathrm{Bi}$ (sometimes called the "Bairy function") is a solution of the Airy differential equation $$y' '(z)-zy(z)=0,$$ which is linearly independent from the Airy Ai function.

Properties

Relationship between Airy Bi and modified Bessel I
Relationship between Scorer Gi and Airy functions
Relationship between Scorer Hi and Airy functions

Videos

Leading Tsunami wave reaching the shore (27 November 2009)
Series solution of ode: Airy's equation (3 November 2010)
Airy differential equation (26 November 2013)

References

The mathematics of rainbows
Tables of Weyl Fractional Integrals for the Airy Function
Special Functions: An Introduction to the Classical Functions of Mathematical Physics
Airy function zeros

See Also

Airy Ai
Scorer Gi
Scorer Hi