Difference between revisions of "Airy zeta function"

From specialfunctionswiki
Jump to: navigation, search
(References)
(References)
Line 4: Line 4:
 
$$\zeta_{\mathrm{Ai}}(2) = \dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$
 
$$\zeta_{\mathrm{Ai}}(2) = \dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$
 
=References=
 
=References=
[http://en.wikipedia.org/wiki/Airy_zeta_function Airy zeta function (Wikipedia)]
+
[http://en.wikipedia.org/wiki/Airy_zeta_function Airy zeta function (Wikipedia)]<br />
 
[http://mathworld.wolfram.com/AiryZetaFunction.html Airy zeta function (Mathworld)]
 
[http://mathworld.wolfram.com/AiryZetaFunction.html Airy zeta function (Mathworld)]

Revision as of 02:06, 21 October 2014

The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$ It can be shown that $$\zeta_{\mathrm{Ai}}(2) = \dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$

References

Airy zeta function (Wikipedia)
Airy zeta function (Mathworld)