Difference between revisions of "Alternating sum over bottom of binomial coefficient with top fixed equals 0"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$\displaystyle\sum_{k=0}^n (-1)^k {n \choose k} = {n \choose 0} - {n \choose 1} + {n\choose 2} - \ldots \pm {n \choose n}=0,$$ where...")
 
 
Line 3: Line 3:
 
$$\displaystyle\sum_{k=0}^n (-1)^k {n \choose k} = {n \choose 0} - {n \choose 1} + {n\choose 2} - \ldots \pm {n \choose n}=0,$$
 
$$\displaystyle\sum_{k=0}^n (-1)^k {n \choose k} = {n \choose 0} - {n \choose 1} + {n\choose 2} - \ldots \pm {n \choose n}=0,$$
 
where the sign $\pm$ depends on whether $n$ is even or odd and ${n \choose k}$ denotes the [[binomial coefficient]].
 
where the sign $\pm$ depends on whether $n$ is even or odd and ${n \choose k}$ denotes the [[binomial coefficient]].
 +
 +
==Proof==
  
 
==References==
 
==References==
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum over bottom of binomial coefficient with top fixed equals 2^n|next=Finite sum of arithmetic progression}}: 3.1.7
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Sum over bottom of binomial coefficient with top fixed equals 2^n|next=Finite sum of arithmetic progression}}: 3.1.7
 +
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 12:51, 17 September 2016

Theorem

The following formula holds: $$\displaystyle\sum_{k=0}^n (-1)^k {n \choose k} = {n \choose 0} - {n \choose 1} + {n\choose 2} - \ldots \pm {n \choose n}=0,$$ where the sign $\pm$ depends on whether $n$ is even or odd and ${n \choose k}$ denotes the binomial coefficient.

Proof

References