# Antiderivative of arccos

From specialfunctionswiki

## Theorem

The following formula holds: $$\displaystyle\int \mathrm{arccos}(z) \mathrm{d}z = z\mathrm{arccos}(z)-\sqrt{1-z^2}+C,$$ where $\mathrm{arccos}$ denotes the inverse cosine function and $C$ denotes an arbitrary constant.