Difference between revisions of "Antiderivative of coth"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$ where $\ma...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds:
 
$$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$
 
$$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].

Revision as of 05:40, 16 May 2015

Theorem: The following formula holds: $$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent, $\log$ denotes the logarithm, and $\sinh$ denotes the hyperbolic sine.

Proof: