Difference between revisions of "Antiderivative of coth"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds:
 
<strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds:
$$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)),$$
+
$$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)) + C,$$
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
+
for arbitrary constant $C$, where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 22:43, 30 May 2016

Theorem: The following formula holds: $$\displaystyle\int \mathrm{coth}(z) \mathrm{d}z=\log(\sinh(z)) + C,$$ for arbitrary constant $C$, where $\mathrm{coth}$ denotes the hyperbolic cotangent, $\log$ denotes the logarithm, and $\sinh$ denotes the hyperbolic sine.

Proof: