Difference between revisions of "Antiderivative of hyperbolic cosecant"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Antiderivative of hyperbolic cosecant|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$
 
$$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Revision as of 07:55, 8 June 2016

Theorem

The following formula holds: $$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant, $\log$ denotes the logarithm, and $\tanh$ denotes the hyperbolic tangent.

Proof

References