Difference between revisions of "Antiderivative of hyperbolic cosecant"

From specialfunctionswiki
Jump to: navigation, search
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right),$$
+
$$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right)+C,$$
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
 
where $\mathrm{csch}$ denotes the [[csch|hyperbolic cosecant]], $\log$ denotes the [[logarithm]], and $\tanh$ denotes the [[tanh|hyperbolic tangent]].
  

Latest revision as of 07:55, 8 June 2016

Theorem

The following formula holds: $$\displaystyle\int \mathrm{csch}(z)\mathrm{d}z = \log\left(\tanh\left(\frac{z}{2}\right)\right)+C,$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant, $\log$ denotes the logarithm, and $\tanh$ denotes the hyperbolic tangent.

Proof

References