Difference between revisions of "Antiderivative of sech"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \mathrm{sech}(z)dz=\...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Antiderivative of sech|Theorem]]:</strong> The following formula holds:
 
<strong>[[Antiderivative of sech|Theorem]]:</strong> The following formula holds:
$$\displaystyle\int \mathrm{sech}(z)dz=\arctan(\sinh(z)),$$
+
$$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)),$$
 
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 08:29, 16 May 2016

Theorem: The following formula holds: $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)),$$ where $\mathrm{sech}$ denotes the hyperbolic secant, $\arctan$ denotes the inverse tangent, and $\sinh$ denotes the hyperbolic sine.

Proof: