Difference between revisions of "Antiderivative of sech"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \mathrm{sech}(z)dz=\...")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Antiderivative of sech|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
$$\displaystyle\int \mathrm{sech}(z)dz=\arctan(\sinh(z)),$$
+
$$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$
 
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
 
where $\mathrm{sech}$ denotes the [[sech|hyperbolic secant]], $\arctan$ denotes the [[arctan|inverse tangent]], and $\sinh$ denotes the [[sinh|hyperbolic sine]].
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> █
+
==Proof==
</div>
+
 
</div>
+
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 07:05, 9 June 2016

Theorem

The following formula holds: $$\displaystyle\int \mathrm{sech}(z) \mathrm{d}z=\arctan(\sinh(z)) + C,$$ where $\mathrm{sech}$ denotes the hyperbolic secant, $\arctan$ denotes the inverse tangent, and $\sinh$ denotes the hyperbolic sine.

Proof

References