Difference between revisions of "Antiderivative of tanh"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \tanh(z)dz = \log(\c...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>[[Antiderivative of tanh|Theorem]]:</strong> The following formula holds:
 
<strong>[[Antiderivative of tanh|Theorem]]:</strong> The following formula holds:
$$\displaystyle\int \tanh(z)dz = \log(\cosh(z)),$$
+
$$\displaystyle\int \tanh(z)\mathrm{d}z = \log(\cosh(z)),$$
 
where $\tanh$ denotes the [[tanh|hyperbolic tangent]], $\log$ denotes the [[logarithm]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 
where $\tanh$ denotes the [[tanh|hyperbolic tangent]], $\log$ denotes the [[logarithm]], and $\cosh$ denotes the [[cosh|hyperbolic cosine]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 08:13, 16 May 2016

Theorem: The following formula holds: $$\displaystyle\int \tanh(z)\mathrm{d}z = \log(\cosh(z)),$$ where $\tanh$ denotes the hyperbolic tangent, $\log$ denotes the logarithm, and $\cosh$ denotes the hyperbolic cosine.

Proof: