Difference between revisions of "Arcsin"

From specialfunctionswiki
Jump to: navigation, search
Line 13: Line 13:
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$$
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
<strong>Proof:</strong> If $y=\mathrm{arcsin}(z)$ then $\sin(y)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
+
<strong>Proof:</strong> If $\theta=\mathrm{arcsin}(z)$ then $\sin(\theta)=z$. Now use [[implicit differentiation]] with respect to $z$ to get
$$\cos(y)y'=1.$$
+
$$\cos(\theta)\theta'=1.$$
Substitution back in $y=\mathrm{arcsin(z)}$ yields the formula
+
The following image shows that $\cos(\mathrm{arcsin}(z))=\sqrt{1-z^2}$:
 +
[[File:Cos(arcsin(z)).png|200px|center]]
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █ $$   
 
$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █ $$   
 
</div>
 
</div>

Revision as of 05:26, 31 October 2014

The function $\mathrm{arcsin} \colon [-1,1] \rightarrow \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ is the inverse function of the sine function.

Properties

Proposition: $$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\sqrt{1-z^2}}$$

Proof: If $\theta=\mathrm{arcsin}(z)$ then $\sin(\theta)=z$. Now use implicit differentiation with respect to $z$ to get $$\cos(\theta)\theta'=1.$$ The following image shows that $\cos(\mathrm{arcsin}(z))=\sqrt{1-z^2}$:

Cos(arcsin(z)).png

$$\dfrac{d}{dz} \mathrm{arcsin(z)} = \dfrac{1}{\cos(\mathrm{arcsin(z)})} = \dfrac{1}{\sqrt{1-z^2}}. █ $$

Proposition: $$\int \mathrm{arcsin}(z) dz = \sqrt{1-z^2}+z\mathrm{arcsin}(z)+C$$

Proof:

Proposition: $$\mathrm{arcsin}(z) = \mathrm{arccsc}\left( \dfrac{1}{z} \right)$$

Proof:

Proposition: $$\mathrm{arcsin}(z)=\sum_{k=0}^{\infty} \dfrac{\left(\frac{1}{2} \right)_n}{(2n+1)n!}x^{2n+1}$$

Proof:

References