Difference between revisions of "Arcsinh"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Derivative of arcsinh}}
<strong>Theorem:</strong> The following formula holds:
 
$$\dfrac{d}{dz} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}}.$$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █
 
</div>
 
</div>
 
  
 
=References=
 
=References=

Revision as of 19:15, 15 May 2016

The $\mathrm{arcsinh}$ function is the inverse function of the hyperbolic sine function defined by $$\mathrm{arcsinh}(z)=\log\left(z+\sqrt{1+z^2}\right).$$

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}},$$ where $\mathrm{arcsinh}$ denotes the inverse hyperbolic sine.

Proof

From the definition, $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$ Using derivative of logarithm and the chain rule, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) &= \dfrac{\mathrm{d}}{\mathrm{d}z} \log \left(z + \sqrt{1+z^2} \right) \\ &= \dfrac{1}{z+\sqrt{1+z^2}} \dfrac{\mathrm{d}}{\mathrm{d}z} \Bigg[ z + \sqrt{1+z^2} \Bigg] \\ &= \dfrac{1+\frac{z}{\sqrt{1+z^2}}}{z+\sqrt{1+z^2}} \\ &= \dfrac{\sqrt{1+z^2}+z}{z\sqrt{1+z^2}+1+z^2} \\ &= \dfrac{\sqrt{1+z^2}+z}{z\sqrt{1+z^2}+1+z^2} \left( \dfrac{\sqrt{1+z^2}-z}{\sqrt{1+z^2}-z} \right) \\ &= \dfrac{1}{z(1+z^2)+\sqrt{1+z^2}+z^2\sqrt{1+z^2}-z^2\sqrt{1+z^2}-z-z^3} \\ &= \dfrac{1}{\sqrt{1+z^2}}, \end{array}$$ as was to be shown.

References

References

Abramowitz&Stegun

<center>Inverse hyperbolic trigonometric functions
</center>