# B(x,y)B(x+y,z)=B(y,z)B(y+z,x)

From specialfunctionswiki

## Theorem

The following formula holds: $$B(x,y)B(x+y,z)=B(y,z)B(y+z,x),$$ where $B$ denotes the beta function.

## Proof

## References

- 1953: Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger and Francesco G. Tricomi:
*Higher Transcendental Functions Volume I*... (previous) ... (next): $\S 1.5 (7)$