Difference between revisions of "Bernoulli B"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Bernoulli polynomials $B_n$ are [[orthogonal polynomials]] defined by the formula
 
Bernoulli polynomials $B_n$ are [[orthogonal polynomials]] defined by the formula
$$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} \dfrac{B_n(x) t^n}{n!}.$$
+
$$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$
 +
where $b_k$ are [[Bernoulli numbers]].
 +
 
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
{{:Bernoulli polynomial and Hurwitz zeta}}
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}

Revision as of 09:57, 23 March 2015

Bernoulli polynomials $B_n$ are orthogonal polynomials defined by the formula $$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$ where $b_k$ are Bernoulli numbers.

Properties

Theorem: The following formula holds: $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$

Proof:

Theorem

The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.

Proof

References

Orthogonal polynomials