Difference between revisions of "Bernoulli B"

From specialfunctionswiki
Jump to: navigation, search
Line 36: Line 36:
 
{{:Bernoulli polynomial and Hurwitz zeta}}
 
{{:Bernoulli polynomial and Hurwitz zeta}}
  
 +
=See Also=
 +
[[Bernoulli numbers]]<br />
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}

Revision as of 10:18, 30 December 2015

Bernoulli polynomials $B_n$ are orthogonal polynomials defined by the formula $$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$ where $b_k$ are Bernoulli numbers.

$$B_0(x)=1$$ $$B_1(x)=x-\dfrac{1}{2}$$ $$B_2(x)=x^2-x+\dfrac{1}{6}$$ $$B_3(x)=x^3-\dfrac{3x^2}{2}+\dfrac{x}{2}$$ $$B_4(x)=x^4-2x^3+x^2-\dfrac{1}{30}$$

Properties

Theorem: The following formula holds: $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$

Proof:

Theorem: The following formula holds: $$\displaystyle\int_a^x B_n(t) dt = \dfrac{B_{n+1}(x)-B_{n+1}(a)}{n+1}.$$

Proof:

Theorem: The following formula holds: $$B_n(mx)=m^{n-1}\displaystyle\sum_{k=0}^{m-1} B_n \left( x + \dfrac{k}{m} \right).$$

Proof:

Theorem

The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.

Proof

References

See Also

Bernoulli numbers

Orthogonal polynomials