Difference between revisions of "Bessel at -n-1/2 in terms of Bessel polynomial"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$J_{-n-\frac{1}{2}}(r) = (2 \pi r)^{-\frac{1}{2}} \left[ i^n e^{ir} y_n \left( -\dfrac{1}{ir} \right)+ \dfrac{e^{-ir}}{i^n} y_n\left( \dfrac{1}{ir} \right) \right],$$
 
$$J_{-n-\frac{1}{2}}(r) = (2 \pi r)^{-\frac{1}{2}} \left[ i^n e^{ir} y_n \left( -\dfrac{1}{ir} \right)+ \dfrac{e^{-ir}}{i^n} y_n\left( \dfrac{1}{ir} \right) \right],$$
where $J_{-n-\frac{1}{2}}$ denotes a [[Bessel J sub nu|Bessel function of the first kind]] and $y_n$ denotes a [[Bessel polynomial]].
+
where $J_{-n-\frac{1}{2}}$ denotes a [[Bessel J|Bessel function of the first kind]] and $y_n$ denotes a [[Bessel polynomial]].
  
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==

Revision as of 20:12, 9 June 2016

Theorem

The following formula holds: $$J_{-n-\frac{1}{2}}(r) = (2 \pi r)^{-\frac{1}{2}} \left[ i^n e^{ir} y_n \left( -\dfrac{1}{ir} \right)+ \dfrac{e^{-ir}}{i^n} y_n\left( \dfrac{1}{ir} \right) \right],$$ where $J_{-n-\frac{1}{2}}$ denotes a Bessel function of the first kind and $y_n$ denotes a Bessel polynomial.

Proof

References