Difference between revisions of "Bessel at n+1/2 in terms of Bessel polynomial"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
The following formula holds:
 
The following formula holds:
 
$$J_{n +\frac{1}{2}}(r) = (2\pi r)^{-\frac{1}{2}} \left[\dfrac{e^{ir}}{i^{n+1}} y_n \left( -\dfrac{1}{ir} \right) + i^{n+1}e^{-ir}y_n\left( \dfrac{1}{ir} \right) \right],$$
 
$$J_{n +\frac{1}{2}}(r) = (2\pi r)^{-\frac{1}{2}} \left[\dfrac{e^{ir}}{i^{n+1}} y_n \left( -\dfrac{1}{ir} \right) + i^{n+1}e^{-ir}y_n\left( \dfrac{1}{ir} \right) \right],$$
where $J_{n+\frac{1}{2}}$ denotes a [[Bessel J]] and $y_n$ denotes a [[Bessel polynomial]].
+
where $J_{n+\frac{1}{2}}$ denotes a [[Bessel J]], $i$ denotes the [[imaginary number]], $e^{ir}$ denotes the [[exponential]], and $y_n$ denotes a [[Bessel polynomial]].
  
 
==Proof==
 
==Proof==

Revision as of 05:31, 16 September 2016

Theorem

The following formula holds: $$J_{n +\frac{1}{2}}(r) = (2\pi r)^{-\frac{1}{2}} \left[\dfrac{e^{ir}}{i^{n+1}} y_n \left( -\dfrac{1}{ir} \right) + i^{n+1}e^{-ir}y_n\left( \dfrac{1}{ir} \right) \right],$$ where $J_{n+\frac{1}{2}}$ denotes a Bessel J, $i$ denotes the imaginary number, $e^{ir}$ denotes the exponential, and $y_n$ denotes a Bessel polynomial.

Proof

References