# Difference between revisions of "Bessel polynomial generalized hypergeometric"

From specialfunctionswiki

Line 2: | Line 2: | ||

<strong>[[Bessel polynomial generalized hypergeometric|Theorem]]:</strong> The following formula holds: | <strong>[[Bessel polynomial generalized hypergeometric|Theorem]]:</strong> The following formula holds: | ||

$$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$ | $$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$ | ||

− | where $y_n(x)$ denotes a [[Bessel polynomial]] and ${}_2F_0$ denotes the [[ | + | where $y_n(x)$ denotes a [[Bessel polynomial]] and ${}_2F_0$ denotes the [[hypergeometric pFq]]. |

<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||

<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||

</div> | </div> | ||

</div> | </div> |

## Latest revision as of 10:18, 23 March 2015

** Theorem:** The following formula holds:
$$y_n(x)={}_2F_0 \left( -n, 1+n;-; -\dfrac{1}{2}x \right),$$
where $y_n(x)$ denotes a Bessel polynomial and ${}_2F_0$ denotes the hypergeometric pFq.

**Proof:** █