Difference between revisions of "Bessel polynomial in terms of Bessel functions"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^...")
 
Line 1: Line 1:
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The following formula holds:
+
<strong>[[Bessel polynomial in terms of Bessel functions|Theorem]]:</strong> The following formula holds:
 
$$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$
 
$$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$
 
where $y_n$ denotes a [[Bessel polynomial]] and $J_{\nu}$ denotes a [[Bessel function]].
 
where $y_n$ denotes a [[Bessel polynomial]] and $J_{\nu}$ denotes a [[Bessel function]].

Revision as of 10:20, 23 March 2015

Theorem: The following formula holds: $$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$ where $y_n$ denotes a Bessel polynomial and $J_{\nu}$ denotes a Bessel function.

Proof: