Difference between revisions of "Beta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The beta function $B$ (note: $B$ is capital $\beta$ in Greek) is defined by the formula
+
The beta function $B$ (note: $B$ is [https://en.wikipedia.org/wiki/Beta capital $\beta$] in Greek) is defined by the following formula for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$:
 
$$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t.$$
 
$$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t.$$
  
Line 26: Line 26:
  
 
=References=
 
=References=
Bell. Special Functions <br />
+
* {{BookReference|Higher Transcendental Functions Volume I|1953|Harry Bateman|prev=findme|next=findme}}: $\S 1.5 (1)$
[http://web.mst.edu/~lmhall/SPFNS/spfns.pdf Special functions by Leon Hall]
 
  
 
[[Category:SpecialFunction]]
 
[[Category:SpecialFunction]]

Revision as of 15:34, 23 June 2016

The beta function $B$ (note: $B$ is capital $\beta$ in Greek) is defined by the following formula for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t.$$

Properties

Partial derivative of beta function
Beta in terms of gamma
Beta in terms of sine and cosine

Videos

Beta function - Part 1
Beta function
Beta integral function - basic identity
Gamma function - Part 10 - Beta function
Mod-04 Lec-09 Analytic continuation and the gamma function (Part I)
Gamma Function, Transformation of Gamma Function, Beta Function, Transformation of Beta Function
Beta Function - Gamma Function Relation Part 1
Beta Function - Gamma Function Relation Part 2
Beta Integral: Even Powers Of Sine Function

References