Difference between revisions of "Beta"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The beta function $B$ (note: $B$ is [https://en.wikipedia.org/wiki/Beta capital $\beta$] in Greek) is defined by the following formula for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$:
 
The beta function $B$ (note: $B$ is [https://en.wikipedia.org/wiki/Beta capital $\beta$] in Greek) is defined by the following formula for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$:
$$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t.$$
+
$$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t=\displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(1+t)^{z+y}}=2\displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1} (\cos t)^{2y-1} \mathrm{d}t.$$
 
 
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>

Revision as of 00:40, 9 August 2016

The beta function $B$ (note: $B$ is capital $\beta$ in Greek) is defined by the following formula for $\mathrm{Re}(x)>0$ and $\mathrm{Re}(y)>0$: $$B(x,y)=\displaystyle\int_0^1 t^{x-1}(1-t)^{y-1} \mathrm{d}t=\displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(1+t)^{z+y}}=2\displaystyle\int_0^{\frac{\pi}{2}} (\sin t)^{2x-1} (\cos t)^{2y-1} \mathrm{d}t.$$

Properties

Partial derivative of beta function
Beta in terms of gamma
Beta in terms of sine and cosine
Beta as improper integral
Beta is symmetric

Videos

Beta function - Part 1
Beta function
Beta integral function - basic identity
Gamma function - Part 10 - Beta function
Mod-04 Lec-09 Analytic continuation and the gamma function (Part I)
Gamma Function, Transformation of Gamma Function, Beta Function, Transformation of Beta Function
Beta Function - Gamma Function Relation Part 1
Beta Function - Gamma Function Relation Part 2
Beta Integral: Even Powers Of Sine Function

References