Difference between revisions of "Beta in terms of power of t over power of (1+t)"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$B(x,y)=\displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(1+t)^{x+y}},$$ where $B$ denotes the beta function. ==Proof== ==Reference...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
 
The following formula holds:
 
The following formula holds:
$$B(x,y)=\displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(1+t)^{x+y}},$$
+
$$B(x,y)=\displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(t+1)^{x+y}},$$
 
where $B$ denotes the [[beta]] function.
 
where $B$ denotes the [[beta]] function.
  
 
==Proof==
 
==Proof==
 +
From the definition,
 +
$$B(x,y)=\displaystyle\int_0^1 u^{x-1} (1-u)^{y-1} \mathrm{d}u.$$
 +
We will proceed using [[substitution]]. Let $u=\dfrac{t}{t+1}$ so that $\mathrm{d}u=\dfrac{1}{(t+1)^2} \mathrm{d}t$. Since $u=0$ means $t=0$ and $u=1$ means $t=\infty$, we get
 +
$$\begin{array}{ll}
 +
B(x,y) &= \displaystyle\int_0^1 u^{x-1} (1-u)^{y-1} \mathrm{d}u \\
 +
&= \displaystyle\int_0^{\infty} \left( \dfrac{t}{t+1} \right)^{x-1} \left( 1 -\dfrac{t}{t+1} \right)^{y-1} \dfrac{1}{(t+1)^2} \mathrm{d}t \\
 +
&= \displaystyle\int_0^{\infty} \left( \dfrac{t}{t+1} \right)^{x-1} \left( \dfrac{1}{t+1} \right)^{y-1} \dfrac{1}{(t+1)^2} \mathrm{d}t \\
 +
&= \displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(t+1)^{x+y}},
 +
\end{array}$$
 +
as was to be shown.
  
 
==References==
 
==References==
Line 10: Line 20:
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
[[Category:Unproven]]
+
[[Category:Proven]]

Revision as of 15:25, 6 October 2016

Theorem

The following formula holds: $$B(x,y)=\displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(t+1)^{x+y}},$$ where $B$ denotes the beta function.

Proof

From the definition, $$B(x,y)=\displaystyle\int_0^1 u^{x-1} (1-u)^{y-1} \mathrm{d}u.$$ We will proceed using substitution. Let $u=\dfrac{t}{t+1}$ so that $\mathrm{d}u=\dfrac{1}{(t+1)^2} \mathrm{d}t$. Since $u=0$ means $t=0$ and $u=1$ means $t=\infty$, we get $$\begin{array}{ll} B(x,y) &= \displaystyle\int_0^1 u^{x-1} (1-u)^{y-1} \mathrm{d}u \\ &= \displaystyle\int_0^{\infty} \left( \dfrac{t}{t+1} \right)^{x-1} \left( 1 -\dfrac{t}{t+1} \right)^{y-1} \dfrac{1}{(t+1)^2} \mathrm{d}t \\ &= \displaystyle\int_0^{\infty} \left( \dfrac{t}{t+1} \right)^{x-1} \left( \dfrac{1}{t+1} \right)^{y-1} \dfrac{1}{(t+1)^2} \mathrm{d}t \\ &= \displaystyle\int_0^{\infty} \dfrac{t^{x-1}}{(t+1)^{x+y}}, \end{array}$$ as was to be shown.

References