Difference between revisions of "Catalan's constant using Legendre chi"

From specialfunctionswiki
Jump to: navigation, search
 
Line 5: Line 5:
  
 
==Proof==
 
==Proof==
 +
Recall, by definition,
 +
$$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$
 +
and
 +
$$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
 +
Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields
 +
$$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$
 +
Hence,
 +
$$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$
 +
completing the proof. $\blacksquare$
  
 
==References==
 
==References==
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
[[Category:Proof]]
+
[[Category:Proven]]

Latest revision as of 15:46, 25 February 2018

Theorem

The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is Catalan's constant and $\chi$ denotes the Legendre chi function.

Proof

Recall, by definition, $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ and $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ Hence, $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ completing the proof. $\blacksquare$

References