Difference between revisions of "Cosh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
The hyperbolic cosine function is defined by
+
The hyperbolic cosine function $\cosh \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by
 
$$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$
 
$$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$
  

Revision as of 02:43, 2 June 2016

The hyperbolic cosine function $\cosh \colon \mathbb{C} \rightarrow \mathbb{C}$ is defined by $$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z) = \sinh(z),$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.

Proof

From the definition, $$\mathrm{cosh}(z)=\dfrac{e^z + e^{-z}}{2}$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, and the definition of the hyperbolic sine, $$\dfrac{\mathrm{d}}{\mathrm{d}z} \cosh(z)=\dfrac{e^z - e^{-z}}{2}=\sinh(z),$$ as was to be shown. █

References

Theorem

The following formula holds: $$\cosh^2(z)-\sinh^2(z)=1,$$ where $\cosh$ denotes the hyperbolic cosine and $\sinh$ denotes the hyperbolic sine.

Proof

From the definitions $$\cosh(z)=\dfrac{e^{z}+e^{-z}}{2}$$ and $$\sinh(z)=\dfrac{e^{z}-e^{-z}}{2},$$ we see $$\begin{array}{ll} \cosh^2(z) - \sinh^2(z) &= \left( \dfrac{e^{z}+e^{-z}}{2} \right)^2 - \left( \dfrac{e^{z}-e^{-z}}{2} \right)^2 \\ &= \dfrac{1}{4} \left( e^{2z}+2+e^{-2z}-e^{2z}+2-e^{-2z} \right) \\ &= 1, \end{array}$$ as was to be shown. █

References

Theorem

The Weierstrass factorization of $\cosh(x)$ is $$\cosh x = \displaystyle\prod_{k=1}^{\infty} 1 + \dfrac{4x^2}{(2k-1)^2\pi^2}.$$

Proof

References

Theorem

The following formula holds: $$\cosh(az)=az {}_0F_1 \left( ; \dfrac{1}{2}; \dfrac{(az)^2}{4} \right),$$ where $\cosh$ denotes the hyperbolic cosine and ${}_0F_1$ denotes the hypergeometric pFq.

Proof

References

Theorem

The following formula holds: $$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z),$$ where $I_{-\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\cosh$ denotes the hyperbolic cosine.

Proof

References

Theorem

The following formula holds: $$\cosh(z)=\cos(iz),$$ where $\cosh$ is the hyperbolic cosine and $\cos$ is the cosine.

Proof

References

Theorem

The following formula holds: $$\cos(z)=\cosh(iz),$$ where $\cos$ is the cosine and $\cosh$ is the hyperbolic cosine.

Proof

From the definition of $\cosh$ and the definition of $\cos$, $$\cosh(iz)=\dfrac{e^{iz}+e^{-iz}}{2}=\cos(z),$$ as was to be shown.

References

Theorem

The following formula holds: $$\sec(\mathrm{gd}(x))=\cosh(x),$$ where $\sec$ denotes the secant, $\mathrm{gd}$ denotes the Gudermannian, and $\cosh$ denotes the hyperbolic cosine.

Proof

References

Theorem

The following formula holds: $$\cosh(\mathrm{gd}^{-1}(x))=\sec(x),$$ where $\cosh$ is the hyperbolic cosine, $\mathrm{gd}^{-1}$ is the inverse Gudermannian, and $\sec$ is the secant.

Proof

References

See Also

Arccosh

<center>Hyperbolic trigonometric functions
</center>