Difference between revisions of "Debye function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with " <div align="center"> <gallery> File:Page 998.jpg|Abramowitz&Stegun, pg.998. </gallery> </div>")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
The Debye functions, $D_n$, are defined by
 +
$$D_n(x)=\dfrac{n}{x^n} \displaystyle\int_0^x \dfrac{t^n}{e^t-1} \mathrm{d}t.$$
  
 
<div align="center">
 
<div align="center">
Line 5: Line 7:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Properties=
 +
 +
=References=
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 15:56, 10 July 2017

The Debye functions, $D_n$, are defined by $$D_n(x)=\dfrac{n}{x^n} \displaystyle\int_0^x \dfrac{t^n}{e^t-1} \mathrm{d}t.$$

Properties

References