Difference between revisions of "Dedekind zeta function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Let $F$ be a a finite field extension of the rational numbers. The Dedekind zeta function of $F$ is $$\zeta_F(z)=\displaystyle\sum_{\mathfrak{a}} N(\mathfrak{a})^{-z}...")
 
Line 14: Line 14:
  
 
=References=
 
=References=
[http://lanl.arxiv.org/pdf/math/0210060v4.pdf Panorama of zeta functions]
+
[http://lanl.arxiv.org/pdf/math/0210060v4.pdf Panorama of zeta functions]<br />
 +
[http://www.wikiwand.com/en/Dedekind_zeta_function]

Revision as of 04:23, 12 April 2015

Let $F$ be a a finite field extension of the rational numbers. The Dedekind zeta function of $F$ is $$\zeta_F(z)=\displaystyle\sum_{\mathfrak{a}} N(\mathfrak{a})^{-z}; \mathrm{Re}(z)>1,$$ where the sum is over the nontrivial ideals $\mathfrak{a}$ of the ring of integers $\mathcal{O}_F$ of $F$ and $N(\mathfrak{a})$ denotes the norm of the ideal $\mathfrak{a}$.

Properties

Theorem: The following Euler product holds: $$\zeta_F(z)=\displaystyle\prod_{\mathfrak{p}} \dfrac{1}{1-N(\mathfrak{p})^{-z}},$$ where $\mathfrak{p}$ denotes a nontrivial prime ideal of $\mathcal{O}_F$.

Proof:

References

Panorama of zeta functions
[1]