Difference between revisions of "Derivative of Bessel Y with respect to its order"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "==Theorem== The following formula holds: $$Y_{\nu}(z)= ==Proof== ==References== * {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. S...")
 
Line 1: Line 1:
 
==Theorem==
 
==Theorem==
The following formula holds:
+
The following formula holds for $\nu \neq 0, \pm 1, \pm 2, \ldots$:
$$Y_{\nu}(z)=
+
$$\dfrac{\partial}{\partial \nu} Y_{\nu}(z)=\cot(\nu \pi) \left[ \dfrac{\partial}{\partial \nu} J_{\nu}(z)-\pi Y_{\nu}(z) \right] - \csc(\nu \pi) \dfrac{\partial}{\partial \nu} J_{-\nu}(z)-\pi J_{\nu}(z),$$
 +
where $Y_{\nu}$ denotes the [[Bessel Y|Bessel function of the second kind]], $\cot$ denotes the [[cotangent]], $J_{\nu}$ denotes the [[Bessel J|Bessel function of the first kind]], $\pi$ denotes [[pi]], and $\csc$ denotes the [[cosecant]].
 
==Proof==
 
==Proof==
  
 
==References==
 
==References==
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Derivative of Bessel J with respect to its order|next=findme}}: 9.1.65
 
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Derivative of Bessel J with respect to its order|next=findme}}: 9.1.65

Revision as of 22:44, 19 June 2016

Theorem

The following formula holds for $\nu \neq 0, \pm 1, \pm 2, \ldots$: $$\dfrac{\partial}{\partial \nu} Y_{\nu}(z)=\cot(\nu \pi) \left[ \dfrac{\partial}{\partial \nu} J_{\nu}(z)-\pi Y_{\nu}(z) \right] - \csc(\nu \pi) \dfrac{\partial}{\partial \nu} J_{-\nu}(z)-\pi J_{\nu}(z),$$ where $Y_{\nu}$ denotes the Bessel function of the second kind, $\cot$ denotes the cotangent, $J_{\nu}$ denotes the Bessel function of the first kind, $\pi$ denotes pi, and $\csc$ denotes the cosecant.

Proof

References