Difference between revisions of "Derivative of Gudermannian"

From specialfunctionswiki
Jump to: navigation, search
(Proof)
 
Line 8: Line 8:
 
$$\mathrm{gd}(x) = \displaystyle\int_0^x \mathrm{sech}(t) \mathrm{d}t.$$  
 
$$\mathrm{gd}(x) = \displaystyle\int_0^x \mathrm{sech}(t) \mathrm{d}t.$$  
 
Using the [[fundamental theorem of calculus]],
 
Using the [[fundamental theorem of calculus]],
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{gd}(x) = \dfrac{1}{\cosh x} = \mathrm{sech}(x),$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{gd}(x) = \mathrm{sech}(x),$$
 
as was to be shown.
 
as was to be shown.
  

Latest revision as of 22:08, 19 September 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{gd}(x)=\mathrm{sech}(x),$$ where $\mathrm{gd}$ denotes the Gudermannian and $\mathrm{sech}$ denotes the hyperbolic secant.

Proof

From the definition, $$\mathrm{gd}(x) = \displaystyle\int_0^x \mathrm{sech}(t) \mathrm{d}t.$$ Using the fundamental theorem of calculus, $$\dfrac{\mathrm{d}}{\mathrm{d}x} \mathrm{gd}(x) = \mathrm{sech}(x),$$ as was to be shown.

References