Difference between revisions of "Derivative of arcsinh"

From specialfunctionswiki
Jump to: navigation, search
 
Line 5: Line 5:
  
 
==Proof==
 
==Proof==
 +
From the definition,
 +
$$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$
 +
Using [[derivative of logarithm]] and the [[chain rule]],
 +
$$\begin{array}{ll}
 +
\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) &= \dfrac{\mathrm{d}}{\mathrm{d}z} \log \left(z + \sqrt{1+z^2} \right) \\
 +
&= \dfrac{1}{z+\sqrt{1+z^2}} \dfrac{\mathrm{d}}{\mathrm{d}z} \Bigg[ z + \sqrt{1+z^2} \Bigg] \\
 +
&= \dfrac{1+\frac{z}{\sqrt{1+z^2}}}{z+\sqrt{1+z^2}} \\
 +
&= \dfrac{\sqrt{1+z^2}+z}{z\sqrt{1+z^2}+1+z^2} \\
 +
&= \dfrac{\sqrt{1+z^2}+z}{z\sqrt{1+z^2}+1+z^2} \left( \dfrac{\sqrt{1+z^2}-z}{\sqrt{1+z^2}-z} \right) \\
 +
&= \dfrac{1}{z(1+z^2)+\sqrt{1+z^2}+z^2\sqrt{1+z^2}-z^2\sqrt{1+z^2}-z-z^3} \\
 +
&= \dfrac{1}{\sqrt{1+z^2}},
 +
\end{array}$$
 +
as was to be shown.
  
 
==References==
 
==References==
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
[[Category:Unproven]]
+
[[Category:Proven]]

Latest revision as of 00:08, 16 September 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) = \dfrac{1}{\sqrt{1+z^2}},$$ where $\mathrm{arcsinh}$ denotes the inverse hyperbolic sine.

Proof

From the definition, $$\mathrm{arcsinh}(z)=\log \left(z + \sqrt{1+z^2} \right).$$ Using derivative of logarithm and the chain rule, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arcsinh}(z) &= \dfrac{\mathrm{d}}{\mathrm{d}z} \log \left(z + \sqrt{1+z^2} \right) \\ &= \dfrac{1}{z+\sqrt{1+z^2}} \dfrac{\mathrm{d}}{\mathrm{d}z} \Bigg[ z + \sqrt{1+z^2} \Bigg] \\ &= \dfrac{1+\frac{z}{\sqrt{1+z^2}}}{z+\sqrt{1+z^2}} \\ &= \dfrac{\sqrt{1+z^2}+z}{z\sqrt{1+z^2}+1+z^2} \\ &= \dfrac{\sqrt{1+z^2}+z}{z\sqrt{1+z^2}+1+z^2} \left( \dfrac{\sqrt{1+z^2}-z}{\sqrt{1+z^2}-z} \right) \\ &= \dfrac{1}{z(1+z^2)+\sqrt{1+z^2}+z^2\sqrt{1+z^2}-z^2\sqrt{1+z^2}-z-z^3} \\ &= \dfrac{1}{\sqrt{1+z^2}}, \end{array}$$ as was to be shown.

References