Difference between revisions of "Derivative of arctan"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Proposition:</strong> The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arctan}(z) = \dfrac{1...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>Proposition:</strong> The following formula holds:
+
The following formula holds:
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arctan}(z) = \dfrac{1}{z^2+1},$$
 
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arctan}(z) = \dfrac{1}{z^2+1},$$
 
where $\mathrm{arctan}$ denotes the [[arctan|inverse tangent]] function.
 
where $\mathrm{arctan}$ denotes the [[arctan|inverse tangent]] function.
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong> If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now use [[implicit differentiation]] with respect to $z$ yields
+
==Proof==
 +
If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now [[implicit differentiation]] with respect to $z$ yields
 
$$\sec^2(\theta)\theta'=1.$$
 
$$\sec^2(\theta)\theta'=1.$$
 
The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:
 
The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:
 
[[File:Sec(arctan(z)).png|200px|center]]
 
[[File:Sec(arctan(z)).png|200px|center]]
 
Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula
 
Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1}. █$$
+
$$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1},$$
</div>
+
as was to be shown. █
</div>
+
 
 +
==References==
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 13:05, 22 September 2016

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arctan}(z) = \dfrac{1}{z^2+1},$$ where $\mathrm{arctan}$ denotes the inverse tangent function.

Proof

If $\theta=\mathrm{arctan}(z)$ then $\tan \theta = z$. Now implicit differentiation with respect to $z$ yields $$\sec^2(\theta)\theta'=1.$$ The following triangle shows that $\sec^2(\mathrm{arctan}(z))=z^2+1$:

Sec(arctan(z)).png

Substituting back in $\theta=\mathrm{arccos(z)}$ yields the formula $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{arccos(z)} = \dfrac{1}{\sec^2(\mathrm{arctan(z)})} = \dfrac{1}{z^2+1},$$ as was to be shown. █

References