Derivative of sine

From specialfunctionswiki
Revision as of 02:46, 5 January 2017 by Tom (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \sin(z) = \cos(z),$$ where $\sin$ denotes the sine function and $\cos$ denotes the cosine function.

Proof

From the definition, $$\sin(z) = \dfrac{e^{iz}-e^{-iz}}{2i},$$ and so using the derivative of the exponential function, the linear property of the derivative, the chain rule, and the definition of the cosine function, $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \sin(z) &= \dfrac{1}{2i} \left[ \dfrac{\mathrm{d}}{\mathrm{d}z} [e^{iz}] - \dfrac{\mathrm{d}}{\mathrm{d}z}[e^{-iz}] \right] \\ &= \dfrac{1}{2i} \left[ ie^{iz} + ie^{-iz} \right] \\ &= \dfrac{e^{iz}+e^{-iz}}{2} \\ &= \cos(z), \end{array}$$ as was to be shown. █

References