Difference between revisions of "Digamma"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The digamma function $\psi$ is defined by $$\psi(z) = \dfrac{d}{dz} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$")
 
Line 1: Line 1:
 
The digamma function $\psi$ is defined by
 
The digamma function $\psi$ is defined by
 
$$\psi(z) = \dfrac{d}{dz} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$
 
$$\psi(z) = \dfrac{d}{dz} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi(1)=-\gamma$ and for integers $n\geq 2$,
 +
$$\psi(n)=-\gamma + \displaystyle\sum_{k=1}^{n-1} \dfrac{1}{k}$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi\left(\dfrac{1}{2}\right)=-\gamma-2\log(2)$ and for integers $n \geq 1$,
 +
$$\psi \left( n + \dfrac{1}{2} \right) = -\gamma - 2 \log(2) + 2 \left( 1 + \dfrac{1}{3} + \ldots + \dfrac{1}{2n-1} \right).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi(z+1) = \psi(z) + \dfrac{1}{z}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi(z+n)=\dfrac{1}{(n-1)+z} + \dfrac{1}{(n-2)+z} + \ldots + \dfrac{1}{2+z} + \dfrac{1}{1+z} + \psi(1+z)$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi(1-z)=\psi(z) + \pi \cot(\pi z)$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi(2z)=\dfrac{1}{2}\psi(z) + \dfrac{1}{2} \psi \left( z + \dfrac{1}{2} \right) + \log(2)$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> $\psi(\overline{z})=\overline{\psi(z)}$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>

Revision as of 06:50, 31 October 2014

The digamma function $\psi$ is defined by $$\psi(z) = \dfrac{d}{dz} \log \Gamma(z) = \dfrac{\Gamma'(z)}{\Gamma(z)}.$$

Properties

Theorem: $\psi(1)=-\gamma$ and for integers $n\geq 2$, $$\psi(n)=-\gamma + \displaystyle\sum_{k=1}^{n-1} \dfrac{1}{k}$$

Proof:

Theorem: $\psi\left(\dfrac{1}{2}\right)=-\gamma-2\log(2)$ and for integers $n \geq 1$, $$\psi \left( n + \dfrac{1}{2} \right) = -\gamma - 2 \log(2) + 2 \left( 1 + \dfrac{1}{3} + \ldots + \dfrac{1}{2n-1} \right).$$

Proof:

Theorem: $\psi(z+1) = \psi(z) + \dfrac{1}{z}$

Proof:

Theorem: $\psi(z+n)=\dfrac{1}{(n-1)+z} + \dfrac{1}{(n-2)+z} + \ldots + \dfrac{1}{2+z} + \dfrac{1}{1+z} + \psi(1+z)$

Proof:

Theorem: $\psi(1-z)=\psi(z) + \pi \cot(\pi z)$

Proof:

Theorem: $\psi(2z)=\dfrac{1}{2}\psi(z) + \dfrac{1}{2} \psi \left( z + \dfrac{1}{2} \right) + \log(2)$

Proof:

Theorem: $\psi(\overline{z})=\overline{\psi(z)}$

Proof: