Difference between revisions of "Dirichlet eta"

From specialfunctionswiki
Jump to: navigation, search
(s -> z)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define
 
Let $\mathrm{Re} \hspace{2pt} z > 0$, then define
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$
+
$$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^z}.$$
This series is clearly the [[Riemann zeta function]] with alternating terms.
 
  
 
<div align="center">
 
<div align="center">
Line 12: Line 11:
 
=See Also=
 
=See Also=
 
[[Riemann zeta]]<br />
 
[[Riemann zeta]]<br />
 +
 +
[[Category:SpecialFunction]]

Latest revision as of 20:58, 5 November 2017

Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^z}.$$

See Also

Riemann zeta