Difference between revisions of "Ei(x)=-Integral from -x to infinity of e^(-t)/t dt"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
==References==
 
==References==
 
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|prev=Exponential integral Ei|next=Exponential integral Ei series}}
 
* {{PaperReference|On certain definite integrals involving the exponential-integral|1881|James Whitbread Lee Glaisher|prev=Exponential integral Ei|next=Exponential integral Ei series}}
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Logarithmic integral}}: $5.1.2$ (<i>note: this reference writes this formula with $\mathrm{Ei}(x)$ instead of $\mathrm{Ei}(-x)$</i>)
+
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Exponential integral E|next=Exponential integral Ei}}: $5.1.2$ (<i>note: this reference writes this formula with $\mathrm{Ei}(x)$ instead of $\mathrm{Ei}(-x)$</i>)
  
 
[[Category:Theorem]]
 
[[Category:Theorem]]
 
[[Category:Unproven]]
 
[[Category:Unproven]]

Revision as of 00:47, 24 March 2018

Theorem

The following formula holds for $x>0$: $$\mathrm{Ei}(x) = -\displaystyle\int_{-x}^{\infty} \dfrac{e^{-t}}{t} \mathrm{d}t,$$ where $\mathrm{Ei}$ denotes the exponential integral Ei and $e^{-t}$ denotes the exponential.

Proof

References