Difference between revisions of "Error function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
 
(21 intermediate revisions by the same user not shown)
Line 1: Line 1:
The error function $\mathrm{erf}$ is defined by
+
The (normalized) error function $\mathrm{erf}$ is defined by
$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} d\tau.$$
+
$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau,$$
 +
where $\pi$ denotes [[pi]] and $e^{-\tau^2}$ denotes the [[exponential]] function.
  
 
<div align="center">
 
<div align="center">
 
<gallery>
 
<gallery>
 
File:Erfplot.png|Graph of $\mathrm{erf}$.
 
File:Erfplot.png|Graph of $\mathrm{erf}$.
File:Complex erf.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{erf}$.
+
File:Complexerrorplot.png|[[Domain coloring]] of $\mathrm{erf}$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
  
 
=Properties=
 
=Properties=
{{:Taylor series for error function}}
+
[[Taylor series for error function]]<br />
 
+
[[Series for erf with exponential factored out]]<br />
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
[[Error function is odd]]<br />
<strong>Theorem:</strong> The following formula holds:
+
[[Complex conjugate of argument of error function]]<br />
$\mathrm{erf}(z)=\dfrac{2}{\sqrt{\pi}}e^{-z^2}\displaystyle\sum_{k=0}^{\infty} \dfrac{2^k}{1 \cdot 3 \cdot \ldots \cdot (2k+1)} z^{2k+1}.$
+
[[Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x]]<br />
<div class="mw-collapsible-content">
+
[[Limit of erf when z approaches infinity and the modulus of arg(z) is less than pi/4]]<br />
<strong>Proof:</strong>
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:$\mathrm{erf}(-z)=-\mathrm{erf}(z).$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
 
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:$\mathrm{erf}(\overline{z}) = \overline{\mathrm{erf}}(z).$
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>  █
 
</div>
 
</div>
 
  
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<strong>Theorem:</strong> The following formula holds:
 
<strong>Theorem:</strong> The following formula holds:
$\dfrac{1}{2} \left( 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sqrt{2}\sigma} \right) \right)=\dfrac{1}{\sigma \sqrt{2 \pi}} \displaystyle\int_{-\infty}^x \exp \left( -\dfrac{(t-\mu)^2}{2\sigma^2} \right)dt.$
+
$\dfrac{1}{2} \left( 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sqrt{2}\sigma} \right) \right)=\dfrac{1}{\sigma \sqrt{2 \pi}} \displaystyle\int_{-\infty}^x \exp \left( -\dfrac{(t-\mu)^2}{2\sigma^2} \right)\mathrm{d}t.$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
Line 43: Line 27:
  
 
=Videos=
 
=Videos=
[https://www.youtube.com/watch?v=5v7d8jmlMi4 The Laplace transform of the error function $\mathrm{erf}(t)$]
+
[https://www.youtube.com/watch?v=5v7d8jmlMi4 The Laplace transform of the error function $\mathrm{erf}(t)$ (15 September 2013)]<br />
 +
[https://www.youtube.com/watch?v=CcFUQhorgdc The Error function (8 November 2013)] <br />
 +
[https://www.youtube.com/watch?v=1bKropXjTD0 Video 1690 - ERF Function (7 July 2015)] <br />
  
 
=References=
 
=References=
 +
* {{BookReference|Special Functions of Mathematical Physics and Chemistry|1956|Ian N. Sneddon|prev=Sine integral|next=findme}}: $\S 5 (5.11)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erfc}}: 7.1.1
 +
 
[http://www.johndcook.com/erf_and_normal_cdf.pdf Relating $\phi$ and erf]
 
[http://www.johndcook.com/erf_and_normal_cdf.pdf Relating $\phi$ and erf]
  
<center>{{:Error functions footer}}</center>
+
{{:Error functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 00:43, 25 June 2017

The (normalized) error function $\mathrm{erf}$ is defined by $$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau,$$ where $\pi$ denotes pi and $e^{-\tau^2}$ denotes the exponential function.

Properties

Taylor series for error function
Series for erf with exponential factored out
Error function is odd
Complex conjugate of argument of error function
Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x
Limit of erf when z approaches infinity and the modulus of arg(z) is less than pi/4

Theorem: The following formula holds: $\dfrac{1}{2} \left( 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sqrt{2}\sigma} \right) \right)=\dfrac{1}{\sigma \sqrt{2 \pi}} \displaystyle\int_{-\infty}^x \exp \left( -\dfrac{(t-\mu)^2}{2\sigma^2} \right)\mathrm{d}t.$

Proof:

Videos

The Laplace transform of the error function $\mathrm{erf}(t)$ (15 September 2013)
The Error function (8 November 2013)
Video 1690 - ERF Function (7 July 2015)

References

Relating $\phi$ and erf

Error functions