Difference between revisions of "Error function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} d\tau.$$")
 
 
(34 intermediate revisions by the same user not shown)
Line 1: Line 1:
$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} d\tau.$$
+
The (normalized) error function $\mathrm{erf}$ is defined by
 +
$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau,$$
 +
where $\pi$ denotes [[pi]] and $e^{-\tau^2}$ denotes the [[exponential]] function.
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Erfplot.png|Graph of $\mathrm{erf}$.
 +
File:Complexerrorplot.png|[[Domain coloring]] of $\mathrm{erf}$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
[[Taylor series for error function]]<br />
 +
[[Series for erf with exponential factored out]]<br />
 +
[[Error function is odd]]<br />
 +
[[Complex conjugate of argument of error function]]<br />
 +
[[Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x]]<br />
 +
[[Limit of erf when z approaches infinity and the modulus of arg(z) is less than pi/4]]<br />
 +
 
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds:
 +
$\dfrac{1}{2} \left( 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sqrt{2}\sigma} \right) \right)=\dfrac{1}{\sigma \sqrt{2 \pi}} \displaystyle\int_{-\infty}^x \exp \left( -\dfrac{(t-\mu)^2}{2\sigma^2} \right)\mathrm{d}t.$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
 +
 
 +
=Videos=
 +
[https://www.youtube.com/watch?v=5v7d8jmlMi4 The Laplace transform of the error function $\mathrm{erf}(t)$ (15 September 2013)]<br />
 +
[https://www.youtube.com/watch?v=CcFUQhorgdc The Error function (8 November 2013)] <br />
 +
[https://www.youtube.com/watch?v=1bKropXjTD0 Video 1690 - ERF Function (7 July 2015)] <br />
 +
 
 +
=References=
 +
* {{BookReference|Special Functions of Mathematical Physics and Chemistry|1956|Ian N. Sneddon|prev=Sine integral|next=findme}}: $\S 5 (5.11)$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erfc}}: 7.1.1
 +
 
 +
[http://www.johndcook.com/erf_and_normal_cdf.pdf Relating $\phi$ and erf]
 +
 
 +
{{:Error functions footer}}
 +
 
 +
[[Category:SpecialFunction]]

Latest revision as of 00:43, 25 June 2017

The (normalized) error function $\mathrm{erf}$ is defined by $$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}}\displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau,$$ where $\pi$ denotes pi and $e^{-\tau^2}$ denotes the exponential function.

Properties

Taylor series for error function
Series for erf with exponential factored out
Error function is odd
Complex conjugate of argument of error function
Two-sided inequality for e^(x^2) integral from x to infinity e^(-t^2) dt for non-negative real x
Limit of erf when z approaches infinity and the modulus of arg(z) is less than pi/4

Theorem: The following formula holds: $\dfrac{1}{2} \left( 1 + \mathrm{erf} \left( \dfrac{x-\mu}{\sqrt{2}\sigma} \right) \right)=\dfrac{1}{\sigma \sqrt{2 \pi}} \displaystyle\int_{-\infty}^x \exp \left( -\dfrac{(t-\mu)^2}{2\sigma^2} \right)\mathrm{d}t.$

Proof:

Videos

The Laplace transform of the error function $\mathrm{erf}(t)$ (15 September 2013)
The Error function (8 November 2013)
Video 1690 - ERF Function (7 July 2015)

References

Relating $\phi$ and erf

Error functions