Difference between revisions of "Error function is odd"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ wh...")
 
(Proof)
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed">
+
==Theorem==
<strong>[[Error function is odd|Theorem]]:</strong> The following formula holds:
+
The following formula holds:
 
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$
 
$$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$
where $\mathrm{erf}$ denotes the [[error function]].
+
where $\mathrm{erf}$ denotes the [[error function]] (i.e. $\mathrm{erf}$ is an [[odd function]]).
<div class="mw-collapsible-content">
+
 
<strong>Proof:</strong>  █
+
==Proof==
</div>
+
From the definition,
</div>
+
$$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau.$$
 +
So,
 +
$$\begin{array}{ll}
 +
\mathrm{erf}(-x) &= \dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{-x} e^{-\tau^2} \mathrm{d}\tau \\
 +
&\stackrel{u=-\tau}{=} -\dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{x} e^{-u^2} \mathrm{d}u,
 +
\end{array}$$
 +
proving that $\mathrm{erf}$ is odd. $\blacksquare$
 +
 
 +
==References==
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=findme|next=Erf of conjugate is conjugate of erf}}: 7.1.9
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 03:41, 28 March 2017

Theorem

The following formula holds: $$\mathrm{erf}(-z)=-\mathrm{erf}(z),$$ where $\mathrm{erf}$ denotes the error function (i.e. $\mathrm{erf}$ is an odd function).

Proof

From the definition, $$\mathrm{erf}(x)=\dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^x e^{-\tau^2} \mathrm{d}\tau.$$ So, $$\begin{array}{ll} \mathrm{erf}(-x) &= \dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{-x} e^{-\tau^2} \mathrm{d}\tau \\ &\stackrel{u=-\tau}{=} -\dfrac{2}{\sqrt{\pi}} \displaystyle\int_0^{x} e^{-u^2} \mathrm{d}u, \end{array}$$ proving that $\mathrm{erf}$ is odd. $\blacksquare$

References