Difference between revisions of "Euler's formula"

From specialfunctionswiki
Jump to: navigation, search
 
Line 5: Line 5:
  
 
==Proof==
 
==Proof==
 +
Recall the definition of $\cos$
 +
$$\cos(z) = \dfrac{e^{iz} + e^{-iz}}{2}$$
 +
and the definition of $\sin$
 +
$$\sin(z) = \dfrac{e^{iz}-e^{-iz}}{2i}.$$
 +
Now compute
 +
$$\begin{array}{ll}
 +
\cos(z) + i\sin(z) &= \left( \dfrac{e^{iz}+e^{-iz}}{2} \right) + i \left( \dfrac{e^{iz}-e^{-iz}}{2i} \right) \\
 +
&= e^{iz},
 +
\end{array}$$
 +
as was to be shown. █
  
 
==References==
 
==References==
 +
 +
[[Category:Theorem]]
 +
[[Category:Proven]]

Latest revision as of 00:20, 23 December 2016

Theorem

The following formula holds: $$e^{iz}=\cos(z)+i\sin(z),$$ where $e^{iz}$ denotes the exponential function, $\cos$ denotes the cosine, $i$ denotes the imaginary number, and $\sin$ denotes the sine.

Proof

Recall the definition of $\cos$ $$\cos(z) = \dfrac{e^{iz} + e^{-iz}}{2}$$ and the definition of $\sin$ $$\sin(z) = \dfrac{e^{iz}-e^{-iz}}{2i}.$$ Now compute $$\begin{array}{ll} \cos(z) + i\sin(z) &= \left( \dfrac{e^{iz}+e^{-iz}}{2} \right) + i \left( \dfrac{e^{iz}-e^{-iz}}{2i} \right) \\ &= e^{iz}, \end{array}$$ as was to be shown. █

References