Difference between revisions of "Euler product for Riemann zeta"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> <strong>Theorem (Euler Product):</strong> The following formula hol...")
 
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
+
==Theorem==
<strong>[[Euler product for Riemann zeta|Theorem]] (Euler Product):</strong> The following formula holds:
+
The following formula holds for $\mathrm{Re}(z)>1$:
$$\zeta(z)=\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{n^z} = \displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}}.$$
+
$$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$
<div class="mw-collapsible-content">
+
where $\zeta$ denotes [[Riemann zeta]].
<strong>Proof:</strong> █
+
 
</div>
+
==Proof==
</div>
+
 
 +
==References==
 +
* {{BookReference|The Zeta-Function of Riemann|1930|Edward Charles Titchmarsh|prev=Riemann zeta|next=Series for log(riemann zeta) over primes}}: § Introduction $(2)$
 +
* {{BookReference|Higher Transcendental Functions Volume III|1953|Harry Bateman|prev=Riemann zeta|next=Reciprocal Riemann zeta in terms of Mobius}}: pg. $170$
 +
* {{BookReference|Handbook of mathematical functions|1964|Milton Abramowitz|author2=Irene A. Stegun|prev=Riemann zeta|next=findme}}: $23.2.2$
 +
 
 +
[[Category:Theorem]]
 +
[[Category:Unproven]]

Latest revision as of 05:00, 16 September 2016

Theorem

The following formula holds for $\mathrm{Re}(z)>1$: $$\zeta(z)=\displaystyle\prod_{p \mathrm{\hspace{2pt} prime}} \dfrac{1}{1-p^{-z}},$$ where $\zeta$ denotes Riemann zeta.

Proof

References